LHS® XTS™ PROPAGATION PREVENTION & THERMAL MANAGEMENT PRODUCT

XTS POUCH

XTS products rely on a proprietary gel and novel containment design to address both thermal runaway and thermal performance concerns in lithium-ion battery (LiB) applications.

Key thermal properties have multiple functions for LiB thermal management:

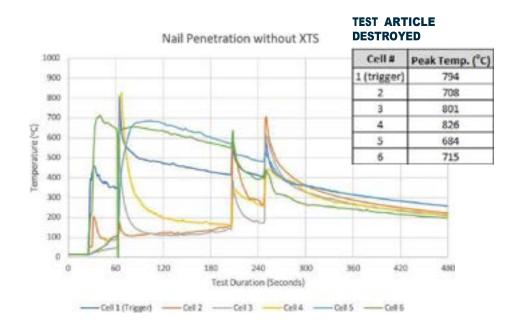
- Enhanced specific heat capacity and thermal conductivity for tailored cooling behavior during normal pack operations
- Excellent thermal barrier and energy conversion properties through use of a high latent heat PCM which provides both cell-to-cell and ejecta thermal protection
- Custom design approach to achieve optimized thermal performance with reduced weight, which is scalable to a diversity of LiB formats

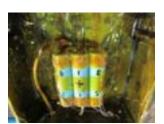
CUSTOMIZED XTS POUCH

CUSTOMIZED FOR:

- Cell Spacing
- · Cell holder designs
- Connectors/BMS configurations

CONFORMABLE XTS POUCH

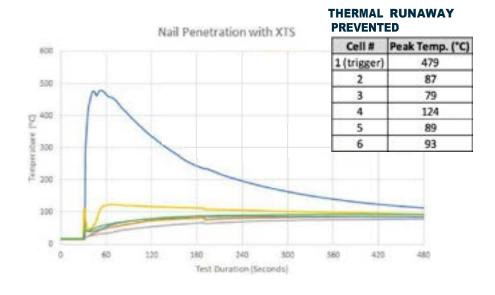

GEOMETRY APPLIED BASED ON:


- Assembly process
- Safety vs performance needs
- Weight restrictions

THERMAL RUNAWAY PROTECTION

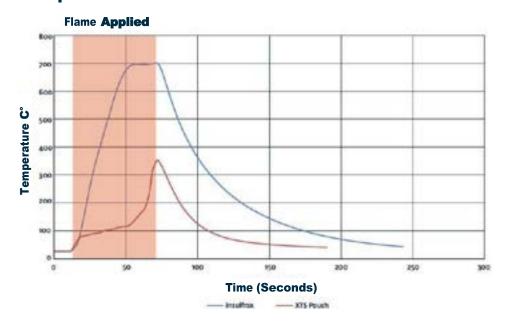
XTS is designed to prevent thermal runaway by:

- Capture and Convert Thermal Energy
 - XTS vaporized into a non-combustiable vapor that absorbs thermal energy
- Quench and Extinguish Flaming
 - Non-combustible vapor limits oxygen availability
- · Blocking or Deflecting Ejecta
 - Novel heat deflection/thermal barrier properties can be tailored for specific needs. Its high specific heat capacity provides better thermal balancing during standard operating conditions



PRE-TEST

POST TEST



PRE-TEST

POST TEST

XTS Pouches can out compete traditional insulation materials and provide a more effective flame barrier:

AFTER TORCH TEST

Side exposed to flame

Backside

XTS pouch immediately self-extinguishes upon multiple applications of a propane torch at 1200°C. No flame penetration/damage on reverse side of flame application.

TYPICAL PHYSICAL PROPERTIES				
Density:	1.1 g/cm ³			
Thermal Conductivity:	1.0 W/mK			
Specific Heat Capacity:	4.0 J/g/°C			
Phase Transition:	95-110°C			
Thermal Absorption:	2000 J/g			
Coefficient Thermal Expansion (volumetric):	Pliable; reference 300-400 × 10-6/K @ 30-70°C			
Bulk Electrical Resistivity:	6x10 ¹³ Ω cm			
Shore Hardness:	Pliable			
Laminate Thickness:	115µm+/-5%			
Laminate Strength:	>22.5N/15mm			
ROHS Compliance:	Compliant			

XTS POUCH: ALTERNATIVE FILL OPTIONS

XTS pouches can also be designed with other fill materials to meet specific thermal management needs, specifically using traditional solid-to-liquid based PCMs including Fill & Flow products.

TYPICAL PHYSICAL PROPERTIES				
Density:	0.85-0.97 g/cm ³			
Thermal Conductivity:	0.74-1 W/mK (xy-plane)			
Specific Heat Capacity:	1.85-2.35/g/°C*			
Phase Transition:	35-85°C**			
Thermal Absorption:	160-200 J/g***			
Thermal Expansion (volumetric):	Pliable; up to 3% volume change @PTT			
Bulk Electrical Resistivity:	6x10 ¹³ Ω cm			
Shore Hardness:	Pliable depending on fill material			
Laminate Thickness:	115µm+/-5%			
Laminate Strength:	>22.5N/15mm			
ROHS Compliance:	Compliant			

^{*}Reference F&F table below for typical heat capacity ranges

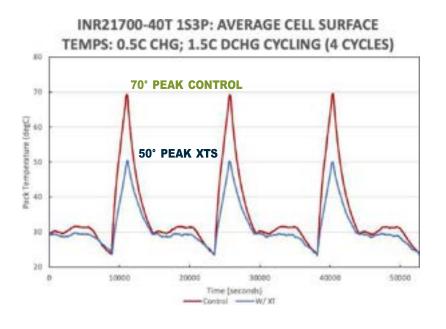
^{***}Reference F&F table below; based on 10% of total mass being pouch material

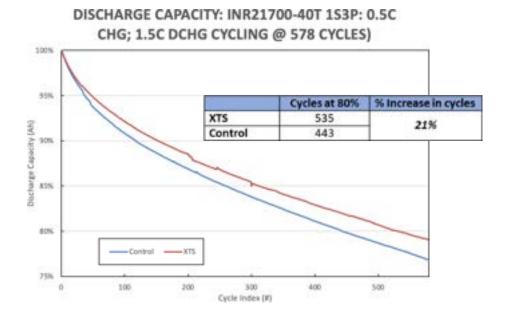
LHS Product	LHS F&F-89	LHS F&F-90R	LHS F&F-91	LHS F&F-92	LHS F&F-93
Temperature (PPT):	35-39 °C	42-46 °C	49-51 °C	53-57 °C	59-63°C
Latent Heat:	210-230 kJ/kg	180-200 kJ/kg	200-220 kJ/kg	200-220 kJ/kg	210-230 kJ/kg
Specific Gravity @ 22°C:	0.8	0.8	0.8	0.8	0.8
Viscosity Above PTT (CPS):	25-100	25-100	25-100	25-100	25-100
Operating Temp. Range:	-10-120°C	-10-120°C	-10-120°C	-10-120°C	-10-120°C
Volume Resistivity:	1.1 x10 ¹⁵ Ωcm	4.3 x10 ¹³ Ω cm	4.5 x10 ¹³ Ωcm	4.5 x10 ¹³ Ω cm	4.5 x10 ¹³ Ωcm
Dielectric Constant:	2.04	3.05	3.05	3.05	3.05
Dielectric Strength**:	21.71 MV/m	36.63 MV/m	35.63 MV/m	35.63 MV/m	35.63 MV/m
RoHS Compliance:	Compliant	Compliant	Compliant	Compliant	Compliant
Avg. Specific Heat Capacity, Cp-Below PTT*	1.85 J/g · °C	1.90 J/g ∙ °C	1.90 J/g •°C	1.90 J/g ∙ °C	1.90 J/g ° ℃
Avg. Specific Heat Capacity, Cp-Above PTT*	2.35 J/g •°C	2.45 J/g ·°C	2.45 J/g •°C	2.45 J/g •°C	2.45 J/g ·°C
Avg. Thermal Conductivity, - Below PTT*	0.35 W/m·k	0.35 W/m•k	0.35 W/m·k	0.35 W/m·k	0.35 W/m·k
Avg. Thermal Conductivity, - Above PTT*	0.25 W/m•k	0.25 W/m·k	0.25 W/m·k	0.25 W/m·k	0.25 W/m•k

^{*}viscosity determined at 20°C above the transition temperature *Other phase transition temperatures up to 130°C are available

^{**}Reference F&F table below for typical PTT ranges

^{*}Similar to most solid and liquid materials, the specific heat capacity and thermal conductivity have insignificant change above and below the transition temperature.


^{**}Tested at 3 mm thickness


XTS THERMAL MANAGEMENT

XTS pouches provide a passive thermal solution to challenges observed in many battery applications where heat generation during standard operation can have lasting damage to the battery.

XTS specifically addresses this through:

- Tailorable heat absorbing materials using either the XTS gel or other PCM-based fill materials
- Achieving maximum heat absorption at the lowest possible weight due to configurable pouch design
- · Higher overall effective thermal conductivity compared to traditional passive solutions

